Solvent and phosphine dependency in the reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{P})_{2}$ ($\mathrm{P}-\mathrm{P}=\mathrm{dppm}$ or dppe) with terminal alkynes

Jason M. Lynam *, Tracy D. Nixon, Adrian C. Whitwood
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

A R T I C L E I N F O

Article history:

Received 20 May 2008
Received in revised form 16 June 2008
Accepted 18 June 2008
Available online 25 June 2008

Keywords:

Ruthenium
Vinylidene
Mechanism

Abstract

Reaction of cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right]$ (dppm $=1,2$-bis(diphenylphosphino)methane) with $\mathrm{PhC} \equiv \mathrm{CH}$ and NaPF_{6} utilising methanol as solvent results in the formation of the η^{3}-butenynyl complex $\left[\mathrm{Ru}\left(\eta^{3}-\right.\right.$ $\left.\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh})(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right]$ in good yield. Similar reactions with $\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{Pr}^{n} \mathrm{C} \equiv \mathrm{CH}$ resulted in the corresponding alkyl-substituted complexes and all three of these compounds have been characterised by NMR spectroscopy and X-ray crystallography. The mechanism of this reaction has been probed by employing labelling experiments with both $\mathrm{PhC} \equiv \mathrm{CD}$ and $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ allowing the identity of possible intermediates in the reaction to be determined. Furthermore, $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh}\right)(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right]$ has been shown to be an effective regio- and stereo-selective catalyst for the dimerisation of PhC $\equiv \mathrm{CH}$ to $Z-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CHPh}$ in the absence of solvent. In contrast, no evidence for the formation of alkyne coupling was obtained from the reaction of cis- $\left[\mathrm{RuCl}_{2}(\mathrm{dppe})_{2}\right]$ (dppe $=1,2-b i s($ diphenylphosphino)ethane) with $\mathrm{PhC} \equiv \mathrm{CH}$ and NaPF_{6}.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The ability of electron-rich transition-metal complexes to facilitate the isomerisation of terminal alkynes to their vinylidene tautomer is well documented [1] and it is generally accepted that this occurs via initial coordination of the alkyne to the metal followed by a formal 1,2-hydrogen shift. The precise mechanism of the 1,2-hydrogen shift appears to be system dependant and is still a focus of both mechanistic [2] and theoretical [3] studies. Two general mechanisms have been proposed for this process the first is based on a discrete metal hydride intermediate, formed by $\mathrm{C}-\mathrm{H}$ activation of the alkyne followed by hydrogen migration whereas the second involves a concerted 1,2-hydrogen shift.

Vinylidene ligands have been shown to be important synthetic intermediates, this is principally due to the fact that the α-carbon of these ligands are electrophilic and as such are readily attacked even by weak nucleophiles [4]. This phenomenon has been extensively exploited in the catalytic transformation of alkynes [5]. As such a comprehensive understanding of the different factors affecting both the structure and reactivity of vinylidene complexes is an important goal.

We have recently embarked on a programme of research designed to incorporate nucleobases, tethered to alkynes, into the coordination sphere of organometallic complexes [6]. The poor solubility of these materials in many organic solvents has entailed a

[^0]re-evaluation of many common reactions typically employed to prepare vinylidene complexes. In several cases we have found that changing the solvent has a pronounced effect on the reaction outcome, even when simple alkyl or aryl-substituted alkynes are employed. We now report that the reaction between complexes cis- $\left[\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{P})_{2}\right],(\mathrm{P}-\mathrm{P}=\mathrm{dppm}$ or dppm) may yield both the previously reported vinylidene species trans- $\left[\mathrm{RuCl}(=\mathrm{C}=\mathrm{CHR})(\mathrm{P}-\mathrm{P})_{2}\right]^{+}$ [7] but also butenynyl species $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{RC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHR}\right)(\mathrm{P}-\mathrm{P})_{2}\right]^{+}$, depending on the conditions and phosphine ligand employed. Furthermore, studies using ${ }^{2} \mathrm{D}$ and ${ }^{13} \mathrm{C}$-labelled alkynes have provided important information about the mechanism of the formation of both compounds.

2. Results and discussion

2.1. Synthetic studies

Treatment of a methanol suspension of cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right]$ (1) with NaPF_{6} and 2.1 equiv. of $\mathrm{PhC} \equiv \mathrm{CH}$ did not result in the expected rapid reaction to give the deep red vinylidene complex trans- $\left[\mathrm{RuCl}(=\mathrm{C}=\mathrm{CHPh})(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right](\mathbf{2 a})$ [7]. Instead, over a period of 48 h the solution was observed to turn orange, but a yellow precipitate remained throughout the reaction. The solution was then filtered; the filtrate was shown to contain a number of compounds, including 2a. The solid residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a yellow solution from which a bright yellow solid could be isolated in good yield. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of this solid exhibited four resonances for a single new
product, 3a, in an ABMX coupling pattern. Most notable was the large ${ }^{2} J_{\mathrm{PP}}$ coupling constant between resonances at $\delta-16.21$ and $\delta-26.27$ of 320.3 Hz indicating the presence of two phosphorus atoms with a mutually trans disposition: a septet resonance was also observed for the PF_{6} anion. The ${ }^{1} \mathrm{H}$ NMR spectrum of this solution confirmed the asymmetric arrangement of the dppm ligands in 3a, a further doublet resonance at $\delta 5.58\left({ }^{4} J_{\mathrm{PH}}=4.6 \mathrm{~Hz}\right)$, which integrated to one hydrogen atom, was also observed.

Slow diffusion of hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3 a}$ afforded yellow crystals suitable for study by single crystal X-ray diffraction. The structural determination illustrated that 3a contained a cationic ruthenium centre with a distorted octahedral structure with two dppm ligands (Fig. 1): as expected on the basis of the NMR spectra two of the phosphorus atoms are in a mutually trans position. The remaining two coordination sites at the metal are occupied by a diphenyl-substituted η^{3}-butenynyl ligand which has presumably been formed by a ruthenium-mediated coupling of two molecules of $\mathrm{PhC} \equiv \mathrm{CH}$: the butenynyl ligand exhibits E-stereochemistry. The bond lengths and angles for $\mathbf{3 a}$ are presented in Table 1, for convenience the common labelling scheme shown in Table 1 is employed for all of the structures described: details of the data collection and structural refinement are presented in Table 2. The bond lengths within this ligand are consistent with its formulation as an η^{3}-butenynyl group. For example, the distance between the three ruthenium-bound carbon atoms are $1.248(6) \AA\left(C_{a}-C_{b}\right)$ and $1.384(6) \AA\left(C_{b}-C_{c}\right)$. The former is consistent with an alkyne unit bound to the ruthenium: the deviation from a linear geometry $\left(C_{a}-C_{b}-C_{c} 151.0(4)^{\circ}\right)$ is typical behaviour. The distance between $\mathrm{C}_{\mathrm{b}}-\mathrm{C}_{\mathrm{c}}$ is somewhat longer, but still shorter than that expected for a single bond, which might indicate a contribution to the bonding from resonance form $\mathbf{3 i i}$ (Fig. 2) where the organic ligand binds as a triene. The distance between C_{c} and $C_{d}\{1.330(6) \AA\}$ is typical for an uncoordinated alkene. This structure is consistent with the NMR data obtained and, in particular the resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 5.58$ was assigned to the vinyl proton in the butenynyl ligand.

Several other examples of the dimerisation of alkynes within the coordination sphere of ruthenium to give η^{3}-butenynyl ligands have been reported. For example, Bianchini has demonstrated that reaction of the dihydrogen compound $\left[\mathrm{Ru}(\mathrm{H})\left(\mathrm{H}_{2}\right)\left(\mathrm{PP}_{3}\right)\right]\left[\mathrm{BPh}_{4}\right]$ $\left[\mathrm{PP}_{3}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right.$] with $\mathrm{PhC} \equiv \mathrm{CH}$ results in the formation of $E-\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh}\right)\left(\mathrm{PP}_{3}\right)\right]\left[\mathrm{BPh}_{4}\right][8]$: a similar product was isolated from the corresponding reaction with $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CH}$ [9]. Insight into how the condensation of the alkynes might occur

Fig. 1. Structure of the cation of 3a, thermal ellipsoids, where shown, at the 30% probability level. Hydrogen atoms, except H^{d} omitted for clarity.

Table 1
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{3 c}$

	$\mathbf{3 a}$	$\mathbf{3 b}^{\#}$	3c
$R u-C^{\mathrm{a}}$	$2.404(4)$	$2.404(5)$	$2.262(4)$
$\mathrm{Ru}-\mathrm{C}^{\mathrm{b}}$	$2.230(4)$	$2.236(4)$	$2.215(4)$
$\mathrm{Ru}-\mathrm{C}^{\mathrm{c}}$	$2.156(4)$	$2.199(4)$	$2.202(4)$
$\mathrm{Ru}-\mathrm{P}^{\mathrm{a}}$	$2.3350(10)$	$2.3298(11)$	$2.3602(10)$
$\mathrm{Ru}-\mathrm{P}^{\mathrm{b}}$	$2.3239(11)$	$2.3315(11)$	$2.3277(10)$
$\mathrm{Ru}-\mathrm{P}^{\mathrm{c}}$	$2.3659(10)$	$2.3672(10)$	$2.3361(9)$
$\mathrm{Ru}-\mathrm{P}^{\mathrm{d}}$	$2.3845(10)$	$2.3801(11)$	$2.3472(10)$
$\mathrm{C}^{\mathrm{a}}-\mathrm{C}^{\mathrm{b}}$	$1.248(6)$	$1.257(6)$	$1.301(6)$
$\mathrm{C}^{\mathrm{b}}-\mathrm{C}^{\mathrm{c}}$	$1.384(6)$	$1.360(6)$	$1.345(6)$
$\mathrm{C}^{\mathrm{c}}-\mathrm{C}^{\mathrm{d}}$	$1.330(6)$	$1.317(7)$	$1.369(6)$
$\mathrm{C}^{\mathrm{a}}-\mathrm{C}^{\mathrm{b}}-\mathrm{C}^{\mathrm{c}}$	$151.0(4)$	$152.4(4)$	$146.8(4)$
$\mathrm{C}^{\mathrm{b}}-\mathrm{C}^{\mathrm{c}}-\mathrm{C}^{\mathrm{d}}$	$136.2(4)$	$141.8(5)$	$139.8(4)$
$\mathrm{Ru}-\mathrm{C}^{\mathrm{c}}-\mathrm{C}^{\mathrm{d}}$	$147.5(3)$	$143.5(4)$	$147.2(3)$
$\mathrm{P}^{\mathrm{a}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{b}}$	$71.41(4)$	$71.69(4)$	$70.94(3)$
$\mathrm{P}^{\mathrm{b}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{c}}$	$94.04(4)$	$96.33(4)$	$96.05(3)$
$\mathrm{P}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{d}}$	$70.68(4)$	$70.55(4)$	$70.88(3)$
$\mathrm{P}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{a}}$	$102.02(4)$	$104.57(4)$	$104.48(3)$
$\mathrm{P}^{\mathrm{a}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{d}}$	$170.24(4)$	$172.53(4)$	$172.92(3)$
$\mathrm{P}^{\mathrm{b}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{d}}$	$102.12(4)$	$102.83(4)$	$103.84(3)$
$\mathrm{C}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{a}}$	$89.27(11)$	$92.62(11)$	$91.40(12)$
$\mathrm{C}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{b}}$	$97.71(11)$	$96.23(12)$	$98.73(12)$
$\mathrm{C}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{c}}$	$165.83(11)$	$161.21(11)$	$161.16(13)$
$\mathrm{C}^{\mathrm{c}}-\mathrm{Ru}-\mathrm{P}^{\mathrm{d}}$	$98.99(11)$	$93.04(11)$	$94.17(12)$

The common labelling scheme for all three complexes is adopted as shown above.
\# Bond length/angles are only reported for the major isomer.
within the coordination sphere of the metal was obtained from the observation that the alkynyl-vinylidene complex $[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})$ $\left.(=\mathrm{C}=\mathrm{CHPh})\left(\mathrm{P}\{\mathrm{OMe}\}_{3}\right)_{4}\right]^{+}$rearranges in solution to give $\left[\mathrm{Ru}\left(\eta^{3}-\right.\right.$ $\left.\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh})\left(\mathrm{P}\{\mathrm{OMe}\}_{3}\right)_{4}\right]^{+}[10]$. Other routes to generate these species include the reaction of $\mathrm{RuClH}(\mathrm{Cyttp})$ with $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CPh}$ to give anti-mer and syn-mer- $\left[\mathrm{RuCl}\left(\eta^{3}-\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh}\right)\right.$ (Cyttp)] whereas reaction of $\mathrm{RuH}_{4}(\mathrm{Cyttp})$ [Cyttp $=\mathrm{PhP}\left(\mathrm{CH}_{2}\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\left\{\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right\}_{2}\right)_{2}\right]$ with $\mathrm{PhC} \equiv \mathrm{CH}$ affords $\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})\left(\eta^{3}-\right.\right.$ $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh})($ Cyttp $)][11,12]$. A related compound containing butenynyl and alkynyl ligands, anti-mer- $\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})\left(\eta^{3}-\mathrm{Ph}-\right.\right.$ $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh})(\mathrm{PNP})]$, may be prepared from the reaction of mer, trans-[$\left.\mathrm{RuCl}_{2}(=\mathrm{C}=\mathrm{CHPh})(\mathrm{PNP})\right] \quad\left[\mathrm{PNP}=\operatorname{Pr}^{n} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ with an excess of LiC $\equiv \mathrm{CPh}$ [13]. Several of these compounds have had their structures determined by single crystal X-ray diffraction [9-13] and the topology of the butenynyl ligand in 3a is similar to that observed in the related complexes.

The reaction to form 3a from cis- $\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right], 2$ equiv. of NaPF_{6} and 2.1 equiv. of $\mathrm{PhC} \equiv \mathrm{CH}$ although selective was somewhat slow and therefore efforts were made to optimise the synthesis. By simply increasing the amount of $\mathrm{PhC} \equiv \mathrm{CH}$ employed in the reaction to 10 equiv. 3a could be isolated in excellent yield after 16 h .

In order to gauge the applicability of the synthetic procedure to aliphatic alkynes the reaction of $\mathbf{1}$ with NaPF_{6} in MeOH and 10 equiv. of $\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CH}$ was investigated. This afforded a mixture of $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHBu}^{t}\right)(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right] \quad$ (3b) and trans$\left[\mathrm{RuCl}\left(=\mathrm{C}=\mathrm{CHBu}^{\mathrm{t}}\right)(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right](\mathbf{2 b})$. The vinylidene side-product could be eliminated by increasing the quantity of $\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CH}$ used in the reaction to 50 equiv. In a similar fashion, performing the reaction with 50 equiv. of $\operatorname{Pr}^{n} \mathrm{C} \equiv \mathrm{CH}$ resulted in the formation of $\left[\operatorname{Ru}\left(\eta^{3}-\operatorname{Pr}^{n} \mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPr}^{n}\right)(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right]$ (3c) in good yield. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 b}$ and $\mathbf{3 c}$ exhibited the characteristic

Table 2
Crystal data and refinement for complex 3a, 3b and $\mathbf{3 c}$

	3a	3b	3c
Empirical formula	$\mathrm{C}_{66.25} \mathrm{H}_{55.50} \mathrm{Cl}_{0.50} \mathrm{~F}_{6} \mathrm{P}_{5} \mathrm{Ru}$	$\mathrm{C}_{62} \mathrm{H}_{63} \mathrm{~F}_{6} \mathrm{P}_{5} \mathrm{Ru}$	$\mathrm{C}_{60.50} \mathrm{H}_{60} \mathrm{ClF}_{6} \mathrm{P}_{5} \mathrm{Ru}$
Formula weight	1239.25	1178.04	1192.45
T (K)	112(2)	110(2)	110(2)
Wavelength (\AA)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2(1)/n	P2(1)/c	$P \overline{1}$
a (Å)	12.1261(13)	13.2173(15)	11.0461(13)
b (\AA)	24.302(3)	17.822(2)	13.1283(16)
$c(A)$	19.830(2)	23.718(3)	19.875(2)
$\alpha\left({ }^{\circ}\right)$	90	90	85.602(2)
$\beta\left({ }^{\circ}\right)$	101.035(2)	93.356(2)	88.018(2)
$\gamma\left({ }^{\circ}\right)$	90	90	74.061(2)
$V(\AA)^{3}$	5735.7(10)	5577.1(11)	2762.9(6)
Z	4	4	2
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.435	1.403	1.433
Absorption coefficient (mm^{-1})	0.498	0.484	0.536
$F(000)$	2538	2432	1226
Crystal size (mm)	$0.12 \times 0.10 \times 0.10$	$0.15 \times 0.13 \times 0.09$	$0.41 \times 0.15 \times 0.08$
Theta range for data collection (${ }^{\circ}$)	1.83-25.09	1.72-25.02	1.03-28.40
Index ranges	$\begin{aligned} & -14 \leqslant h \leqslant 14,-28 \leqslant k \leqslant 28, \\ & -23 \leqslant l \leqslant 23 \end{aligned}$	$\begin{aligned} & -15 \leqslant h \leqslant 15,-21 \leqslant k \leqslant 21, \\ & -28 \leqslant l \leqslant 28 \end{aligned}$	$\begin{aligned} & -14 \leqslant \mathrm{~h} \leqslant 14,-17 \leqslant \mathrm{k} \leqslant 17, \\ & -26 \leqslant 1 \leqslant 26 \end{aligned}$
Reflections collected	45698	43926	13570
Independent reflections [$R_{\text {int }}$]	10178 [0.0777]	9819 [0.0809]	13570 [R(int) = 0.0321]
Completeness (to theta) ${ }^{\circ}$	99.6 (to 25.09)	99.7 (to 25.02)	97.8 (to 28.40)
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Data/restraints/parameters	10178/1/731	9819/6/761	13570/6/780
Goodness-of-fit (GOF) on F^{2}	1.026	1.023	1.029
Final R indices [$I>2 \sigma(I)]$	$R_{1}=0.0478, w R_{2}=0.1064$	$R_{1}=0.0470, w R_{2}=0.1038$	$R_{1}=0.0581, w R_{2}=0.1559$
R indices (all data)	$R_{1}=0.0764, w R_{2}=0.1184$	$R_{1}=0.0816, w R_{2}=0.1162$	$R_{1}=0.0654, w R_{2}=0.1611$
Largest difference peak and hole (e \AA^{-3})	0.697 and -0.751	0.882 and -0.609	2.575 and -0.814

ABMX spin system shown by 3a. Complexes 3b and 3c appear to be formed as a mixture of isomers as a minor set of resonances with a

Fig. 2. Possible resonance forms that may be used to describe the structure of butenynyl complexes.

Fig. 3. Structure of the more abundant cation of $\mathbf{3 b}$, thermal ellipsoids, where shown, at the 30% probability level. Hydrogen atoms, except H^{d} omitted for clarity.
similar ABMX spin system are observed in both cases. We assign this second isomer to simply be the Z-isomer of the complex. The structures of 3b and 3c were unambiguously determined by single crystal X-ray diffraction (see Figs. 3 and 4, respectively). In both cases, however, a small number of orange crystals were also obtained from the reaction mixtures on standing in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ which were shown to be trans- $\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right] \cdot 2 \mathrm{CD}_{2} \mathrm{Cl}_{2}, 4 \cdot 2 \mathrm{CD}_{2} \mathrm{Cl}_{2}$, by single crystal X-ray diffraction (see Supplementary Information). An examination of the NMR spectra of the crude reaction mixture illustrated that $\mathbf{4}$ was indeed a minor product of the reaction.

Fig. 4. Structure of the cation of 6 , thermal ellipsoids, where shown, at the 30% probability level. Hydrogen atoms, except H^{d}, omitted for clarity. Two of the phenyl groups are disordered with a 50:50 occupancy, these are indicated by the dotted rings.

The gross topology of complexes 3a-c are essentially identical: in each case the double bond exhibits E-stereochemistry. Interestingly, complex $\mathbf{3 b}$ crystallised as a mixture of forms in a 80:20 ratio, the structure of the major component is shown in Fig. 3. The minor component has the butenynyl ligand rotated by 180° relative to the $\mathrm{Ru}(\mathrm{dppm})_{2}$ framework. Some disorder is also observed in 3c: two of the phenyl rings on a dppm ligand show different orientations. As shown in Table 1, the bond lengths and angles within complexes $\mathbf{3 a}$ and $\mathbf{3 b}$ are, to within statistical significance, identical. In contrast, the structure of 3c exhibits some differences to these two complexes. In particular the triple bond of the butenynyl unit appears to be interacting more strongly with the metal in 3c. Notably the $\mathrm{Ru}-\mathrm{C}_{\mathrm{a}}$ distance is shorter $\{2.262(4) \AA$ A $\}$ than the corresponding distance in either $\mathbf{3 a}\{2.404(4) \AA$) or $\mathbf{3 b}\{2.404(5) \AA$ A $\}$ and the "triple bond" of the butenynyl $\left(C_{a}-C_{b}\right)$ ligand is longer $\{1.301(6) \AA \AA\}$ in $\mathbf{3 c}$ than in either 3a $\{1.248(6) \AA\}$ or $\mathbf{3 b}$ $\{1.257(6) \AA\}$. This is as would be expected on the basis of the De-war-Chatt-Duncanson model if the metal is interacting more strongly with the butenynyl ligand in 3c than in the other two complexes. In a similar vein the formal "single bond" $\left(C_{b}-C_{c}\right)$ with the butenynyl unit is shorter in 3c 1.345(6) \AA than in 3a $\{1.384(6) \AA\}$ and the $\mathrm{Ru}-\mathrm{C}_{\mathrm{c}}$ bond in $\mathbf{3 c}$ is longer $\{2.202(4) \AA$ \} than in $3 \mathbf{a}\{2.156(4) \AA \AA\}$. These results may be interpreted in terms of a greater contribution to the bonding in $\mathbf{3 c}$ from resonance form $\mathbf{3 i i}$ (Fig. 2) than in $\mathbf{3 a}$ or $\mathbf{3 b}$. We have rationalised this effect on the basis of the relative steric demands of the Pr^{n} and Ph groups. The reduced steric bulk and additional conformation flexibility of the Pr^{n} groups in $\mathbf{3 c}$ compared to either the Ph (in $\mathbf{3 a}$) or Bu^{t} (in $\mathbf{3 b}$) ensures that the butenynyl ligand in 3c may interact more strongly with the ruthenium in this case resulting in the observed geometric changes.

2.2. Mechanistic studies

Given the somewhat unexpected formation of the η^{3}-butenynyl complexes the mechanism and factors affecting their formation were investigated. Therefore, the original reaction, reported by Dixneuf, to form 2a was re-examined. Treatment of a dichloromethane solution of $\mathbf{1}$ with NaPF_{6} and $\mathrm{PhC} \equiv \mathrm{CH}$ resulted in the formation of a deep red solution that, as expected, contained $\mathbf{2 a}$ as the major product. A close examination of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of
the crude reaction mixture illustrated that small quantities of 3a were also present. The reaction was repeated and monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy over a period of several weeks. During this time the resonances for $\mathbf{3 a}$ increased in intensity at the expense of the peak for $2 \mathbf{a}$. A series of other species were also observed during the formation of $\mathbf{3 a}$, the most abundant, 5a, exhibited resonances as $\delta 19.9$ (dd, ${ }^{2} J_{\mathrm{PP}}=39.0$ and 12.9 Hz), δ 16.0 (ddd, ${ }^{2} J_{\mathrm{PP}}=400.9 \mathrm{~Hz}, 39.0 \mathrm{~Hz}$ and 17.5 Hz), $\delta-8.3$ (dd, ${ }^{2} J_{\mathrm{PP}}=54.8 \mathrm{~Hz}$ and 17.5 Hz) and $\delta-21.6$ (ddd, ${ }^{2} J_{\mathrm{PP}}=400.9 \mathrm{~Hz}$, 54.8 Hz and 12.9 Hz). Importantly, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture showed that $\mathbf{5 a}$ was formed in substantial quantities before 3a. Repeating the same reaction in $\mathrm{CD}_{3} \mathrm{OD}$ also resulted in the formation of 3a, however due to the poor solubility of both 2a and 3a in this solvent medium the reaction only proceeded when frequently sonicated.

The alkynyl complex trans- $\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh}) \mathrm{Cl}(\mathrm{dppm})_{2}\right](\mathbf{6 a})$ may also act as a precursor for 3a. Treatment of samples of $\mathbf{6 a}$ (which contained small amounts of the bis-alkynyl complex trans-$\left.\left[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})_{2}(\mathrm{dppm})_{2}\right](7 \mathbf{a})[14]\right)$ in MeOH solution with NaPF_{6} and $\mathrm{PhC} \equiv \mathrm{CH}$ resulted in the formation of $\mathbf{2 a}$ and $\mathbf{3 a}$ in approximately equal amounts. In contrast, when the reaction was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ only $\mathbf{2 a}$ was formed over the same time period.

Further mechanistic insight into these processes was gained through a series of isotopic labelling studies. The reactions to form both $\mathbf{2 a}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\mathbf{3 a}$ (in MeOH) were repeated with $\mathrm{PhC} \equiv \mathrm{CD}$. In both cases the ${ }^{1} \mathrm{H}$ NMR spectrum showed no evidence for deuterium incorporation into the final product demonstrating that the vinylidene proton possesses considerable acidity. In the presence of a proton source (the OH proton in MeOH or adventitious water in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) a rapid exchange may occur via 6a. It is important to note that this is in contrast to the data obtained by Grotjahn who demonstrated that the vinylidene proton in complexes $\mathrm{RhCl}\left(=\mathrm{C}=\mathrm{CH}_{2}\right) \mathrm{L}_{2}$ ($\mathrm{L}=$ phosphorus ligand) did not under deuterium exchange with $\mathrm{D}_{2} \mathrm{O}$ [2b]. The difference in behaviour may simply be rationalised by considering that the cationic nature of $2 \mathbf{a}$ would promote the acidity of the vinylidene proton compared to the neutral rhodium-based system.

Corresponding reactions between 1 and $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH afforded trans- $\left[\mathrm{RuCl}\left(={ }^{13} \mathrm{C}=\mathrm{CHPh}\right)(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right]$, ${ }^{13} \mathrm{C}-2 \mathbf{a}$, and $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{Ph}-\mathrm{C} \equiv{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}=\mathrm{CHPh}\right)(\mathrm{dppm})\right]\left[\mathrm{PF}_{6}\right],{ }^{13} \mathrm{C}_{2}-\mathbf{3 a}$, respectively. The availability of these labelled materials allowed

Scheme 1. (i) $+\mathrm{PhC}_{2} \mathrm{H}$, (ii) $-\mathrm{PhC}_{2} \mathrm{H}$, (iii) $-\mathrm{H}^{+}$, (iv) $+\mathrm{H}^{+},(\mathrm{v})-\mathrm{HCl},($ vi $)+\mathrm{HCl},($ vii $)-\mathrm{Cl}^{-}$.
us to further study the interactions of alkynes with the ruthenium centre in more detail.

The reaction of ${ }^{13} \mathrm{C}-\mathbf{2 a}$ with one equivalent of $\mathrm{PhC} \equiv \mathrm{CH}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution resulted in a decrease in the intensity of the doublet resonance in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left({ }^{2} J_{\mathrm{PC}}=12.2 \mathrm{~Hz}\right)$ and the appearance of a singlet due to unlabelled 2a. An identical experiment involving the reaction of $\mathbf{2 a}$ with $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ resulted in the formation of some ${ }^{13} \mathrm{C}$ - 2 a . These results demonstrate that the vinylidene ligand in $\mathbf{2 a}$ is labile and may readily undergo degenerate alkyne exchange.

These studies also provided some further information about the structure of possible intermediates in the formation of 3a from $2 \mathbf{2 a}$. Although the precise nature of these species could not be unambiguously determined, the presence of the ${ }^{13} \mathrm{C}$ label revealed several important structural features. In both the reaction of $2 \mathbf{a}$ with $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ and ${ }^{13} \mathrm{C}-2 \mathrm{a}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ a quartet resonance was observed at $\delta 363.1\left({ }^{2} J_{\mathrm{PC}}=15.5 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. The implication of the quartet multiplicity of this resonance is that a complex with a vinylidene ligand cis to three PPh_{2} is present, inferring the presence of a pendant PPh_{2} group. The ability of dppm ligands to act in this hemi-labile manner in ruthenium(II) complexes has been previously reported [15]. In addition, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibited the same resonances for $\mathbf{5 a}$ as described above and a series of overlapping peaks for ${ }^{13} \mathrm{C}-5 \mathbf{a}$: with the resonance at $\delta 19.9$ showing an additional doublet coupling ${ }^{2} J_{\text {PC }}$ coupling of 86.0 Hz : the three other resonances all exhibiting doublet couplings to the ${ }^{13} \mathrm{C}$-labelled nucleus of 15.3 Hz , implying a structure with one phosphorus trans to an organic ligand formed from $\mathrm{PhC} \equiv \mathrm{CH}$, and the other three cis.

In an attempt to determine the fate of the two alkyne groups in the final butenynyl product a sample of ${ }^{13} \mathrm{C}-\mathbf{2 a}$ was treated with $\mathrm{PhC} \equiv \mathrm{CH}$ in MeOH solution. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the product recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution indicated that ${ }^{13} \mathrm{C}$ incorporation had occurred at both C_{b} and C_{c} to give ${ }^{13} C\left(C_{b}\right)$-3a and ${ }^{13} \mathrm{C}\left(\mathrm{C}_{\mathrm{c}}\right)$-3a respectively in almost equal amounts. No evidence of ${ }^{13} \mathrm{C}$-incorporation at both positions to give ${ }^{13} \mathrm{C}_{2}$-3a was obtained. A similar reaction between $\mathbf{6 a}$ and $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ in MeOH resulted in the formation of a complex mixture containing ${ }^{13} \mathrm{C}_{2}$ - $\mathbf{3 a}$ and smaller amounts of ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}\left(\mathrm{C}_{\mathrm{c}}\right)-\mathbf{3 a}$ and ${ }^{13} \mathrm{C}\left(\mathrm{C}_{\mathrm{b}}\right)-\mathbf{3 a}$.

In order to explain our findings we propose the mechanism shown in Scheme 1. The reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}$ with NaPF_{6} results in the creation of a vacant coordination site at the metal: bind of an alkyne to this site results in the formation of the vinylidene ligand 2a. This step is reversible as we have observed exchange between free and coordinated alkyne. Given that no deuterium label is incorporated into $\mathbf{2 a}$ when $\mathrm{PhC} \equiv \mathrm{CD}$ is used we propose that $2 \mathbf{2 a}$ is in rapid equilibrium with $\mathbf{6 a}$. Subsequent reaction of $\mathbf{6 a}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ may then be envisaged to result in the formation of intermediate \mathbf{A}, containing a pendant phosphine group and a vinylidene ligand. The structure of \mathbf{A} is consistent with the observation of a quartet resonance at $\delta 363.1$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Combination of acetylide and vinylidene ligands, which in previous studies has been proposed to be the key C-C bond formation step, will then lead to intermediate \mathbf{B}, which contains an η^{1}-bound butenynyl ligand. The structure of \mathbf{B} is consistent with the spectroscopic data obtained for 5a. Finally, loss of chloride would result in the formation of $\mathbf{3 a}$.

Although this mechanism is consistent with many of the experimental observations, it does not provide a rationale for the fact that the reaction of ${ }^{13} \mathrm{C}-2 \mathrm{a}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ results in the formation of both ${ }^{13} \mathrm{C}\left(\mathrm{C}_{\mathrm{b}}\right)$-3a and ${ }^{13} \mathrm{C}\left(\mathrm{C}_{\mathrm{c}}\right)$-3a. In addition the lack of deuterium incorporation in the product is not readily explained. Therefore, the presence of the symmetric intermediate \mathbf{C} is proposed, formed by loss of HCl from \mathbf{A}. This provides a convenient explanation for both the lack of deutereium incorporation in the product and the scrambling of positions of the ${ }^{13} \mathrm{C}$-label as both acetylide ligands are now equiva-
lent and the reversible protonation could occur at either. In this case the equilibrium between \mathbf{A} and \mathbf{C} must be more rapid than the subsequent formation of \mathbf{C}. Related bis-alkynyl complexes have been prepared and have been shown to undergo protonation to give η^{3}-enyl complexes [16,17]. In addition, protonation of \mathbf{C} could also lead to the cationic complex \mathbf{D} without re-addition of Cl^{-}. Combination of vinylidene and alkynyl ligands would then afford 3a directly. We have not obtained any evidence for the presence of compounds related to \mathbf{C} and \mathbf{D} in the reaction mixture, but this does not preclude their role in the formation of $\mathbf{3 a}$.

The pronounced solvent effects observed in these reactions may be rationalised in several ways. It is apparent that the reaction of $\mathbf{1}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ to give $\mathbf{2 a}$ is rapid and the subsequent reaction to give 3a is slower. Therefore, when $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is employed as solvent, the high solubility of $\mathbf{1}$ in this medium ensures that a rapid formation of $\mathbf{2 a}$ occurs consuming 1 equiv. of alkyne. In contrast, $\mathbf{1}$ is far less soluble in MeOH therefore the formation of 2a is far slower and as such the relative concentration of $\mathrm{PhC} \equiv \mathrm{CH}$ in solution higher, hence the observation of 3a as the major product in this case. Although this provides an explanation for the initial observation of 3a, it does not provide a basis to rationalise the results obtained from the reactions of $\mathbf{6 a}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ and MeOH . One plausible explanation for these results is that methanol may simply promote halide or phosphorus dissociation from the vinylidene and alkynyl complexes in a more effective manner than dichloromethane, therefore creating a vacant coordination site and permitting binding of a second molecule of $\mathrm{PhC} \equiv \mathrm{CH}$. The possibility of methanol simply acting as a mild acid to promote the formation of $\mathbf{3 a}$ was also considered. Although this possibility cannot be explicitly ruled out, the reaction of $2 \mathbf{a}$ with $\mathrm{PhC} \equiv \mathrm{CH}$ in presence of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ did not appear to enhance the formation of $\mathbf{3 a}$.

2.3. Catalytic dimerisation of $\mathrm{PhC} \equiv \mathrm{CH}$

As several related butenynyl complexes[8,9,16-21] have been proposed as intermediates in the catalytic dimerisation of alkynes, we were intrigued to discover if 3a could promote the dimerisation of $\mathrm{PhC} \equiv \mathrm{CH}$ [22]. This indeed proved to be the case. Reaction of 3a with 100 equiv. of $\mathrm{PhC} \equiv \mathrm{CH}$ in MeOH at room temperature resulted in the formation of a deep yellow solution, from which it was possible to re-isolate the starting ruthenium complex. The predominant organic product from the reaction was $Z-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$: some $E-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$ could be observed. The overall yield of organic products was very poor ($<10 \%$). A series of studies were under taken in order to optimise the reaction conditions. The best results were obtained when the procedure was performed in neat $\mathrm{PhC} \equiv \mathrm{CH}$ at $110^{\circ} \mathrm{C}$. Under these conditions quantitative conversion to $\mathrm{Z}-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$ was observed over a 24 h period only trace amounts ($c a .1 \%$) of the E-isomer were obtained: mass spectrometry also indicated that trace amounts of trimeric products were formed. When these conditions were employed, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectroscopy showed that only small amounts of 3a remained after the reaction, this material showed considerably diminished catalytic activity when the reaction was repeated. Presumably under these more forcing conditions the complex decomposed in the absence of substrate.

Performing catalytic dimerisation using 3a in neat $\mathrm{PhC} \equiv \mathrm{CD}$ or with $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}$ results in quantitative formation of $\mathrm{PhC} \equiv \mathrm{CCD}=\mathrm{CDPh}$ and $\mathrm{PhC} \equiv{ }^{13} \mathrm{C}^{13} \mathrm{CH}=\mathrm{CHPh}$, respectively. In contrast, reaction of 3a with 100 equiv. of $\mathrm{PhC} \equiv \mathrm{CD}$ in MeOH solution resulted in little or no deuterium incorporation as shown by NMR spectroscopy. As in the mechanistic study described above, it is clear that in the presence of a protic medium, H/D exchange occurs rapidly.

From a mechanistic viewpoint, the catalytic process may occur via protonation of 3a with $\mathrm{PhC} \equiv \mathrm{CH}$ to give Z - $\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$

D
(vi)
(v)

Scheme 2. (i) $+\mathrm{PhC}_{2} \mathrm{H},-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$. (ii) $+\mathrm{MeOH},-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$. (iii) + $\mathrm{PhC}_{2} \mathrm{H}$, -MeOH . (iv) $\mathrm{PhC}_{2} \mathrm{H}$. (v) $-\mathrm{H}^{+}$. (vi) $+\mathrm{H}^{+}$.
\{Scheme 2, step (i)\} and the sixteen electron alkynyl species \mathbf{E} : this process may of course be assisted by the dissociation of a phosphorus atom, or the triple bond of the butenynyl ligand from the metal centre creating a vacant site for alkyne coordination. Although our results support the mechanism involving dissociation of a phosphorus ligand, it is important to note that Bianchini has demonstrated that reaction of $E-\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh}\right)\left(\mathrm{PP}_{3}\right)\right]^{+}$ with CO results in the formation of $E-\left[\mathrm{Ru}\left(\eta^{1}-\{\mathrm{Ph}-\right.\right.$ $\left.\mathrm{C} \equiv \mathrm{C}\}-\mathrm{C}=\mathrm{CHPh})(\mathrm{CO})\left(\mathrm{PP}_{3}\right)\right]^{+}[8]$, although as our study of the related dppe system (q.v.) demonstrates that the phosphorus-containing ligand appears to have a considerable influence in the chemistry of these compounds.

The assembly of the butenynyl ligand may then occur in a similar manner $(\mathbf{E} \rightarrow \mathbf{D} \rightarrow \mathbf{3 a})$: the lack of deuterium incorporation when the reaction is performed in MeOH gives further credence to the intermediacy of \mathbf{C} in this process. For this process to account for the total lack of deuterium incorporation it is clear that alkyne coordination, H/D exchange and alkyne dissociation must be rapid in comparison to the subsequent loss of the enyne. It is also feasi-
ble that protonation of 3a by the solvent MeOH (if employed) to afford $Z-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$ and the methoxide complex \mathbf{F} may also be a viable mechanistic pathway in this solvent. Reaction of \mathbf{F} with $\mathrm{PhC} \equiv \mathrm{CH}$ would afford MeOH and \mathbf{E}, which may then lead to the regeneration of 3a.

2.4. Reactions of cis-[$\left.\mathrm{RuCl}_{2}(\text { dppe })_{2}\right]$

In light of the new insights observed with the dppm system we elected to probe the related species, cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppe})_{2}\right][7,23]$, to see if exhibits similar chemistry. In the event, we discovered that there is a significant difference in the reactivity of these two systems and that the addition of a single extra CH_{2} linker in the phosphine ligand backbone has a pronounced effect on the outcome of the reaction. Treatment of a methanol solution of cis$\left[\mathrm{RuCl}_{2}(\mathrm{dppe})_{2}\right]$, with NaPF_{6} and 2.1 equiv. of $\mathrm{PhC} \equiv \mathrm{CH}$ resulted in the rapid formation of a red solution. A ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture illustrated that no species analogous to 3a was formed, but trans- $\left[\mathrm{RuCl}(=\mathrm{C}=\mathrm{CHPh})(\mathrm{dppe})_{2}\right]\left[\mathrm{PF}_{6}\right]$ (8a) was a component of the reaction mixture. Furthermore, when the reaction was repeated with 100 equiv. of $\mathrm{PhC} \equiv \mathrm{CH}$ no evidence for the formation of any products resulting from alkyne dimerisation was obtained.

The difference in behaviour between the dppm and dppe-containing systems may be explained in terms of the different size of the bite angles in the dppm and dppe ligands. The smaller bite angle of dppm presumably means that the ruthenium centre is more open to reaction with a second equivalent of $\mathrm{PhC} \equiv \mathrm{CH}$ thus allowing the subsequent dimerisation to occur. An alternative explanation is that the hemi-lability of the dppm (which forms a four-membered chelate ring) ligand, which serves to create a vacant coordination site at the metal, is not exhibited by dppe (a five membered chelate ring) hence prohibiting the coordination of a second molecule of alkyne. Presumably the four-membered ring exhibited by dppm is considerably more strained than the fivemembered dppe analogue hence providing a rationale for the differing reactivity of the two systems.

2.5. Conclusions

In conclusion, we have demonstrated that the change in reaction solvent and the nature of the phosphorus-containing ligand may have a pronounced effect on the outcome of the reaction of metal complexes with alkynes. This effect might be due to the poor solubility of $\mathbf{1}$ in MeOH or alternatively, the favouring of ligand dissociation in this solvent over $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The η^{3}-butenynyl complex, 3a, is a catalyst for the highly regioselective dimerisation of $\mathrm{PhC} \equiv \mathrm{CH}$. Considering the facile synthesis of 3a and the high selectivity this complex exhibits for the dimerisation of $\mathrm{PhC} \equiv \mathrm{CH}$ in a solvent-less medium, this system offers several advantages for the synthesis of enynes. We are currently exploring the scope of this reaction, and in particular the apparent enhanced reactivity of the dppm-containing system, with regard to the oligomerisation of a range of functionalised alkynes.

3. Experimental

All experimental procedures were performed under an atmosphere of nitrogen or argon using standard Schlenk Line and Glove Box techniques. All solvents were purified by distillation under argon prior to use from appropriate drying agents (MeOH from $\mathrm{Mg} / \mathrm{I}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2} and hexane and $\mathrm{Et}_{2} \mathrm{O}$ from $\mathrm{Na} /$ benzophenone). The $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ used for NMR experiments was dried over CaH_{2} and degassed with three freeze-pump-thaw cycles. The solvent was then vacuum transferred into NMR tubes fitted with PTFE Young's taps.
cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right]$ (1) [24], cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppe})_{2}\right]$ (7) [24], trans$\left[\mathrm{RuCl}(=\mathrm{C}=\mathrm{CHPh})(\mathrm{dppm})_{2}\right]\left[\mathrm{PF}_{6}\right] \quad$ (2a) $[7]$ and trans- $[\mathrm{Ru}(-\mathrm{C} \equiv \mathrm{CPh})$ $\left.\mathrm{Cl}(\mathrm{dppm})_{2}\right](6 \mathbf{a})$ [7], were prepared as described previously. NaPF_{6}, (Fluorochem) dppe, $\mathrm{PhC} \equiv{ }^{13} \mathrm{CH}{ }^{n} \mathrm{PrC} \equiv \mathrm{CH}$ and ${ }^{t} \mathrm{BuC} \equiv \mathrm{CH}$, (Aldrich) and dppm (Acros Organics) were used without further purification. $\mathrm{PhC} \equiv \mathrm{CH}$ was purchased from Alfa Aesar and passed through a short alumina plug prior to use. $\mathrm{PhC} \equiv \mathrm{CD}$ was prepared by deprotonation of $\mathrm{PhC} \equiv \mathrm{CH}$ with LiBu^{n} and quenching of the reaction with $\mathrm{D}_{2} \mathrm{O}$. Deuterium incorporation was confirmed by mass spectrometry.

NMR spectra were acquired on a Bruker AMX 300 (Operating Frequencies $\left.{ }^{1} \mathrm{H} 300.13 \mathrm{MHz},{ }^{31} \mathrm{P} 121.40 \mathrm{MHz},{ }^{13} \mathrm{C} 76.98 \mathrm{MHz}\right){ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ spectra were recorded with proton decoupling. The aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra could not be adequately deconvoluted even with the aid of HMQC spectra. Mass spectrometry measurements were performed on a Thermo-Electron Corp. LCQ Classic (ESI) instrument.

3.1. Synthesis of 3a

$\mathrm{PhC} \equiv \mathrm{CH}(150 \mu \mathrm{l}, 1.25 \mathrm{mmol})$ was added to a stirred suspension of cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right](120 \mathrm{mg}, 0.125 \mathrm{mmol})$ and $\mathrm{NaPF}_{6}(4 \mathrm{mg}$, $0.250 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$. The reaction mixture was stirred for 16 h during which time an orange solution was formed. The solution was filtered and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ that, after removal of the solvent in vacuo, yielded a yellow solid that was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$. Samples of $\mathbf{3 a}$ obtained in this manner were generally pure enough to use in further reactions, although the complex could be further purified by crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. Yield 76%. NMR Spectra $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, ${ }^{1} \mathrm{H} \delta 4.23(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.58$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{C}^{\mathrm{d}} \boldsymbol{H},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=4.6 \mathrm{~Hz}\right), 6.30-7.89$ (aromatic region). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \delta$ -143.90 (septet, ${ }^{1} J_{\text {PF }} 711.0 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$), -26.39 (ddd, $320.4 \mathrm{~Hz}, 46.9$ $\mathrm{Hz}, 27.5 \mathrm{~Hz}$), -16.34 (ddd, $320.4 \mathrm{~Hz}, 32.2 \mathrm{~Hz}, 26.3 \mathrm{~Hz}$), -13.26 (ddd, $32.6 \mathrm{~Hz}, 27.6 \mathrm{~Hz}, 9.7 \mathrm{~Hz}$), -0.07 (ddd, $46.2 \mathrm{~Hz}, 26.2 \mathrm{~Hz}, 10.2$ Hz). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \delta 41.43$ (at, ${ }^{2} \mathrm{~J}_{\mathrm{PC}}=23.5 \mathrm{~Hz}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}$) 44.61 (at, $\left.{ }^{2} J_{\mathrm{PC}}=24.1 \mathrm{~Hz}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}\right), 52.03\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}}\right), 109.11\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=23.0 \mathrm{~Hz}\right.$, C^{a}). Mass Spectrum (ESI) m/z $1073.2 \mathrm{M}^{+}, 905\left\{\mathrm{Ru}(\mathrm{dppm})_{2}\left(\mathrm{C}_{3}\right)-\mathrm{H}\right\}^{+}$ or $\operatorname{Ru}(\mathrm{dppm})\left(\mathrm{P}_{2} \mathrm{C}_{25} \mathrm{H}_{21}\right)\left(\mathrm{C}_{3}\right)^{+}$, $869 \quad \mathrm{Ru}(\mathrm{dppm})_{2}{ }^{+}$, 689 $\mathrm{Ru}(\mathrm{dppm})\left(\mathrm{PhC}_{4} \mathrm{HPh}\right)^{+}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{v}=3683 \mathrm{~cm}^{-1}(\mathrm{br}), 3061 \mathrm{~cm}^{-1}$ (br), $1605 \mathrm{~cm}^{-1}$ (br), $1484 \mathrm{~cm}^{-1}$ (br, w), $1436 \mathrm{~cm}^{-1}$ (s), 1097 cm^{-1} (br). Elemental analysis for $\mathrm{C}_{66} \mathrm{H}_{55} \mathrm{P}_{5} \mathrm{~F}_{6} \mathrm{Ru} .0 .25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc. C, 64.21, H, 4.51 , Found C, 63.99, H, 4.60\%.

3.2. Synthesis of 3b

Complex 3b could be prepared in an identical manner to that described for 3a using the same quantities of solvent, cis$\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right](120 \mathrm{mg}, 0.125 \mathrm{mmol})$ and NaPF_{6}. In order to obtain high yields a large excess of $\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CH}(0.77 \mathrm{ml}, 6.25 \mathrm{mmol})$ was employed. Yield 73%. NMR Spectra $\mathrm{CD}_{2} \mathrm{Cl}_{2},{ }^{1} \mathrm{H} \delta 0.55$ (9H, s, $\left.\mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 4.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\mathrm{C}^{\mathrm{d}} \boldsymbol{H}, \mathrm{d}$, $\left.{ }^{4} \mathrm{~J}_{\mathrm{PH}}=5.1 \mathrm{~Hz}\right), 4.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 5.01(1 \mathrm{H}, \mathrm{m}$, CH_{2}), 6.61-7.90 (aromatic region). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \delta-143.90$ (septet, ${ }^{1} \mathrm{~J}_{\mathrm{PF}}$ $711.0 \mathrm{~Hz}, \mathrm{PF}_{6}^{-}$), -27.06 (ddd, $329.5 \mathrm{~Hz}, 42.4 \mathrm{~Hz}, 29.0 \mathrm{~Hz}$), -20.99 (ddd, $329.5 \mathrm{~Hz}, 36.2 \mathrm{~Hz}, 28.3 \mathrm{~Hz}$), -16.51 (ddd, $36.2 \mathrm{~Hz}, 28.4 \mathrm{~Hz}$, 7.7 Hz), -1.77 (ddd, $42.2 \mathrm{~Hz}, 28.5 \mathrm{~Hz}, 7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \delta 30.13$ (s, $\left.\mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 32.38\left(\mathrm{~s}, \mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 37.61\left(\mathrm{~s}, \mathbf{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right), 37.66\left(\mathrm{~s}, \mathrm{C}\left\{\mathrm{CH}_{3}\right\}_{3}\right)$, $42.17\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}\right), 45.59\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}\right), 48.28\left(\mathrm{~s}, \mathrm{C}^{\mathrm{b}}\right), 117.41(\mathrm{~d}$, ${ }^{2} J_{\mathrm{PC}}=25.5 \mathrm{~Hz}, \mathrm{C}^{\mathrm{a}}$). Minor Isomer ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \delta-25.34$ (ddd, 321.7 Hz , $45.0 \mathrm{~Hz}, 31.4 \mathrm{~Hz}$), -19.22 (ddd, $321.7 \mathrm{~Hz}, 43.9 \mathrm{~Hz}, 24.0 \mathrm{~Hz}$), -5.75 (ddd, $43.8 \mathrm{~Hz}, 31.0 \mathrm{~Hz}, 29.7 \mathrm{~Hz}$), 0.25 (ddd, $45.0 \mathrm{~Hz}, 29.1 \mathrm{~Hz}, 24.1$ Hz). Mass Spectrum (ESI) m/z $1033.29 \mathrm{M}^{+}, 905\left\{\mathrm{Ru}(\mathrm{dppm})_{2}\left(\mathrm{C}_{3}\right)-\right.$ H^{+}or $\mathrm{Ru}(\mathrm{dppm})\left(\mathrm{P}_{2} \mathrm{C}_{25} \mathrm{H}_{21}\right)\left(\mathrm{C}_{3}\right)^{+}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v=3684 \mathrm{~cm}^{-1}(\mathrm{br})$, $3066 \mathrm{~cm}^{-1}$ (br) $2962 \mathrm{~cm}^{-1}$ (br), $1605 \mathrm{~cm}^{-1}$ (br), $1485 \mathrm{~cm}^{-1}$ (br,
w), $1438 \mathrm{~cm}^{-1}$ (s), $1096 \mathrm{~cm}^{-1}$ (br). Elemental analysis for $\mathrm{C}_{62} \mathrm{H}_{63} \mathrm{P}_{5} \mathrm{~F}_{6} \mathrm{Ru} \mathrm{C} \mathrm{63.21} ,\mathrm{H} \mathrm{5.39} ,\mathrm{Found} \mathrm{C} 62.46, \mathrm{H},$,5.46 .

3.3. Synthesis of 3c

Complex 3c could be prepared in an identical manner to that described for 3a using the same quantities of solvent, cis$\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right](120 \mathrm{mg}, 0.125 \mathrm{mmol})$ and NaPF_{6} and $\mathrm{Pr}^{\mathrm{C}} \mathrm{C} \equiv \mathrm{CH}$ ($0.62 \mathrm{ml}, 6.25 \mathrm{mmol}$), of $\operatorname{Pr}^{\mathrm{n}} \mathrm{C} \equiv \mathrm{CH}$. Crystals suitable for study by X-ray diffraction were grown from a concentrated $\mathrm{CD}_{2} \mathrm{Cl}_{2} /$ hexane solution of 3 c . Yield 60%. NMR Spectra, $\mathrm{CD}_{2} \mathrm{Cl}_{2},{ }^{1} \mathrm{H} \delta 0.73(3 \mathrm{H}, \mathrm{t}$, $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.78\left(3 \mathrm{H}, \mathrm{t}, 7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.00-1.21(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $1.27\left(2 \mathrm{H}\right.$, sept, $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.21$ (2 H , sept, $6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $4.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.75(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.80\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=5.0 \mathrm{~Hz}, \mathrm{C}^{\mathrm{d}} \boldsymbol{H}\right), 5.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.57-7.89$ (aromatic region). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \delta-143.90$ (septet, ${ }^{1} \mathrm{~J}_{\mathrm{PF}} 711.0 \mathrm{~Hz}, \mathrm{PF}_{6}{ }^{-}$), -25.82 (ddd, $336.0 \mathrm{~Hz}, 46.3 \mathrm{~Hz}, 29.4 \mathrm{~Hz}$), -12.87 (ddd, 336.2 Hz , $31.3 \mathrm{~Hz}, 26.4 \mathrm{~Hz}$), -12.48 (ddd, $38.9 \mathrm{~Hz}, 29.4 \mathrm{~Hz}, 9.8 \mathrm{~Hz}$), -0.35 (ddd, $45.9 \mathrm{~Hz}, 26.1 \mathrm{~Hz}, 10.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \delta 14.00\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 14.55$ (s, CH_{3}), $23.36\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.93\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $42.42\left(\mathrm{at},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=25.2 \mathrm{~Hz}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}\right), 42.50\left(\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $42.98\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=5.06 \mathrm{~Hz}, \boldsymbol{C}^{\boldsymbol{b}}\right), 44.10\left(\mathrm{at},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=24.1 \mathrm{~Hz}, \mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)$, $107.56\left(\mathrm{dt},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=23.9 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, \mathbf{C}^{\boldsymbol{a}}\right.$), Minor product ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \delta-$ 25.37 (ddd, $321.8 \mathrm{~Hz}, 45.7 \mathrm{~Hz}, 31.9 \mathrm{~Hz}$), -19.18 (ddd, 321.8 Hz , $44.0 \mathrm{~Hz}, 24.2 \mathrm{~Hz}$), -5.73 (ddd, $43.9 \mathrm{~Hz}, 30.7 \mathrm{~Hz}, 29.5 \mathrm{~Hz}$), 0.25 (ddd, $45.1 \mathrm{~Hz}, 28.9 \mathrm{~Hz}, 24.1 \mathrm{~Hz}$. Mass Spectrum (ESI) m/z $1005.26 \mathrm{M}^{+}, 905\left\{\mathrm{Ru}(\mathrm{dppm})_{2}\left(\mathrm{C}_{3}\right)-\mathrm{H}\right\}^{+}$or $\mathrm{Ru}(\mathrm{dppm})\left(\mathrm{P}_{2} \mathrm{C}_{25} \mathrm{H}_{21}\right)\left(\mathrm{C}_{3}\right)^{+}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v=3053 \mathrm{~cm}^{-1}$ (br), $2958 \mathrm{~cm}^{-1}$ (br), $1484 \mathrm{~cm}^{-1}$ (br, w), $1435 \mathrm{~cm}^{-1}$ (s), $1096 \mathrm{~cm}^{-1}$ (br). Elemental analysis for $\mathrm{C}_{60} \mathrm{H}_{59} \mathrm{P}_{5} \mathrm{~F}_{6} \mathrm{Ru}$ calculated. C, $62.66, \mathrm{H}, 5.17$; Found C, $62.25, \mathrm{H}, 5.11 \%$.

3.4. Catalytic studies

All catalytic reactions were performed in a sealed ampoule fitted with a PTFE Young's Tap. In a typical solventless procedure, the ampoule was charged with a stir bar, complex $\mathbf{3 a}(20 \mathrm{mg}, 0.016 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CH}(180 \mu \mathrm{l}, 1.60 \mathrm{mmol})$. The tube was sealed and heated to $110^{\circ} \mathrm{C}$ for 24 h with stirring. After cooling the resulting residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ to afford $Z-\mathrm{PhC} \equiv \mathrm{CCH}=\mathrm{CHPh}$ (133 mg , 79%). If required the organic product could be further purified by passage down a flash silica column. The reaction could be performed in an identical manner by replacing 3a with $\mathbf{1}$ and NaPF_{6} : in this case poor E / Z selectivity was observed.

3.5. Details of X-ray diffraction analysis

Crystals of complexes 3a-c were grown by slow diffusion of hexane into a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of the appropriate compound. Details of the collection and refinement are presented in Table 2. Diffraction data were collected at 110 K on a Bruker Smart Apex diffractometer with Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) using a SMART CCD camera. Diffractometer control, data collection and initial unit cell determination was performed using "smart" [25]. Frame integration and unit-cell refinement software was carried out with "SAINT+" [26]. Absorption corrections were applied by SADABS (v2.03, Sheldrick). Structures were solved by direct methods using shelxs-97[27] and refined by full-matrix least squares using shelxt-97 [28]. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. The butenynyl ligand in $\mathbf{3 b}$ is disordered about two positions, the relative occupancy of each being allowed to refine, the result of which is a 80:20 occupancy. In the structure of $\mathbf{3 c}$ two of the phenyl groups were disordered and were refined using two-site models. In both cases the relative occupancy refined to $1: 1$. There was evidence of twinning of the crystal. The TwinRotMat routine in pLaton [29] was used to partially resolve this problem.

There remained two sites of significant density in the difference map. These are translations of the position of the Ru in the "ac" plane and are presumably due to the presence of smaller crystals related to the main crystal by translation along the "ac" plane.

Acknowledgements

The EPSRC (First Grant Scheme EP/R02178) are gratefully acknowledged for financial support of this work (PDRA to TDN). Mrs. Christine Welby is thanked for important insight into the development of this work.

Appendix A. Supplementary material

CCDC 637644, 637645, 637646 and 637647 contain the supplementary crystallographic data for $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}$ and $\mathbf{4 . 2} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.06.021.

References

[1] (a) .M.I. Bruce, Chem. Rev. 91 (1991) 197;
(b) H. Werner, J. Organomet. Chem. 475 (1994) 45;
(c) Y. Wakatsuki, J. Organometal. Chem. 689 (2004) 4092;
(d) M.C. Puerta, P. Valerga, Coord. Chem. Rev. 193-195 (1999) 977.
[2] (a) D. B Grotjahn, X. Zeng, A.L. Cooksy, J. Am. Chem. Soc. 128 (2006) 2798; (b) D.B. Grotjahn, X. Zeng, A.L. Cooksy, W.S. Kassel, A.G. DiPasquale, L.N. Zakharov, A.L. Rheingold, Organometallics 26 (2007) 3385;
(c) M.J. Cowley, J.M. Lynam, J.M. Slattery, Dalton Trans. (in press) doi:10.1039/ b806358c.
[3] F. De Angelis, A. Sgamellotti, N. Re, Dalton Trans. (2004) 3225.
[4] C. Bianchini, J.A. Casares, M. Peruzzini, A. Romerosa, F. Zanobini, J. Am. Chem. Soc. 118 (1996) 4585.
[5] (a) B.M. Trost, M.U. Frediksen, M.T. Rudd, Angew. Chem., Int. Ed. 44 (2005) 6630;
(b) C. Bruneau, P.H. Dixneuf, Angew. Chem., Int. Ed. 45 (2006) 2176;
(c) C. Bruneau, P.H. Dixneuf, Acc. Chem. Res. 32 (1999) 311;
(d) M. Tokunaga, T. Suzuki, N. Koga, T. Fukushima, A. Horiuchi, Y. Wakatsuki, J. Am. Chem. Soc. 123 (2001) 11917;
(e) D.B. Grotjahn, D.A. Lev, J. Am. Chem. Soc. 126 (2004) 12232;
(f) D.B. Grotjahn, C.D. Incarvito, A.L. Rheingold, Angew. Chem., Int. Ed. 40 (2001) 3884.

6] (a) H. Hamidov, J.C. Jeffery, J.M. Lynam, Chem. Commun. (2004) 1364; (b) M.J. Cowley, J.M. Lynam, A.C. Whitwood, Dalton Trans. (2007) 4427.
[7] D. Touchard, P. Haquette, N. Pirio, L. Toupet, P.H. Dixneuf, Organometallics 12 (1993) 3132.
[8] C. Bianchini, C. Bohanna, M.A. Esteruelas, P. Frediani, A. Meli, L.A. Oro, M. Peruzzini, Organometallics 11 (1992) 3837.
[9] C. Bianchini, M. Peruzzini, F. Zanobini, P. Frediani, A. Albinati, J. Am. Chem. Soc. 113 (1991) 5453.
[10] G. Albertin, S. Antoniutti, E. Bordignon, F. Cazzaro, S. Ianelli, G. Pelizzi, Organometallics 14 (1995) 4114.
[11] G. Jia, A.L. Rheingold, D.W. Meek, Organometallics 8 (1989) 1378.
[12] G. Jia, D.W. Meek, Organometallics 10 (1991) 1444.
[13] C. Bianchini, P. Innocenti, M. Peruzzini, A. Romerosa, F. Zanobini, Organometallics 15 (1996) 279.
[14] During the preparation of these 3a was also observed as a minor product.
[15] (a) J. Ruiz, V. Riera, M. Vivanco, J. Chem. Soc., Dalton Trans. (1995) 1069; (b) J. Ruiz, M.E.G. Mosquera, V. Riera, J. Organometal. Chem. 527 (1997) 35.
[16] T. Rappert, A. Yamamoto, Organometallics 13 (1994) 4984.
[17] C. Bianchini, P. Frediani, D. Masi, M. Peruzzini, F. Zanobini, Organometallics 13 (1994) 4616.
[18] C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, Organometallics 9 (1990) 1146.
[19] C. Slugovc, K. Mereiter, E. Zobetz, R. Schmid, K. Kirchner, Organometallics 15 (1996) 5275.
[20] J.Q. Wang, A.K. Dash, J.C. Berthet, M. Ephritikhine, M.S. Eisen, Organometallics 18 (1999) 2407.
[21] J.-H. Lee, K.G. Caulton, J. Organometal. Chem. 693 (2008) 1664.
[22] (a) For related catalytic systems see for example: M. Nishiura, Z. Hou, J. Mol. Cat. A. 213 (1994) 101;
(b) M. Nishiura, Z. Hou, Y. Wakatsuki, T. Yamaki, T. Miyamoto, J. Am. Chem. Soc. 125 (2003) 1184;
(c) C. Yang, S.P. Nolan, J. Org. Chem. 67 (2002) 591;
(d) C.G.J. Tazelaar, S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen, J.H. Teuben, Organometallics 23 (2004) 936;
(e) H. Katayama, M. Nakayama, T. Nakano, C. Wada, K. Akamastsu, F. Ozawa, Macromolecules 37 (2004) 13;
(f) T. Hirabayashi, S. Sakaguchi, Y. Ishii, Adv. Synth. Cat. 347 (2005) 872;
(g) X. Chen, P. Xue, H.H. Y Sung, I.D. Williams, M. Peruzzini, C. Bianchini, G. Jia, Organometallics 24 (2005) 4330.
[23] D. Touchard, P. Haquette, S. Guesmi, L. Le Pichon, A. Daridor, L. Toupet, P.H. Dixneuf, Organometallics 16 (1997) 3640.
[24] B. Chaudret, G. Commenges, R. Poilblanc, J. Chem. Soc., Dalton Trans. (1984) 1635.
[25] Smart Diffractometer Control Software (v5.625), Bruker-AXS, Bruker AXS GmbH, Karlsruhe, Germany.
[26] SAINT+ (v6.22) Bruker AXS, Bruker AXS GmbH, Karlsruhe, Germany.
[27] G.M. Sheldrick, shelxs-97, Program for the Solution of Crystal Structures, Universität Göttingen, 1997.
[28] G.M. Sheldrick, shelxl-97, Program for the Refinement of Crystal Structures, Universität Göttingen, 1997.
[29] A.L. Spek, platon; Molecular Geometry and Plotting Program, University of Utrecht, The Netherlands, 1997.

[^0]: * Corresponding author. Tel.: +44 (0) 1904 432534; fax: +44 (0) 1904432516.

 E-mail address: jml12@york.ac.uk (J.M. Lynam).

